Advanced algorithms for penalized quantile and composite quantile regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothness selection for penalized quantile regression splines.

Modern data-rich analyses may call for fitting a large number of nonparametric quantile regressions. For example, growth charts may be constructed for each of a collection of variables, to identify those for which individuals with a disorder tend to fall in the tails of their age-specific distribution; such variables might serve as developmental biomarkers. When such a large set of analyses a...

متن کامل

Nonparametric M-quantile Regression via Penalized Splines

Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...

متن کامل

Quantile Regression using Metaheuristic Algorithms

This paper demonstrates that metaheuristic algorithms can provide a useful general framework for estimating both linear and nonlinear econometric models. Two metaheuristic algorithms—firefly and accelerated particle swarm optimization—are employed in the context of several quantile regression models. The algorithms are stable and robust to the choice of starting values and the presence of vario...

متن کامل

Test for single-index composite quantile regression

It is known that composite quantile regression estimator could be much more efficient and sometimes arbitrarily more efficient than the least squares estimator. In this paper, tests for the index parameter and index function in the single-index composite quantile regression are considered. The asymptotic behaviors of the proposed tests are established and their limiting null distributions are d...

متن کامل

A Parallel Algorithm for Large-scale Nonconvex Penalized Quantile Regression

Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recently proposed to solve PQR with nonconvex penalty. The QICD significantly improves the computational...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics

سال: 2020

ISSN: 0943-4062,1613-9658

DOI: 10.1007/s00180-020-01010-1